LRC Generation
The Longitudinal Redundancy Check (LRC) field is one byte, containing an 8–bit
binary value. The LRC value is calculated by the transmitting device, which
appends the LRC to the message. The receiving device recalculates an LRC
during receipt of the message, and compares the calculated value to the actual
value it received in the LRC field. If the two values are not equal, an error results.
The LRC is calculated by adding together successive 8–bit bytes in the message,
discarding any carries, and then two’s complementing the result. The LRC is an
8–bit field, therefore each new addition of a character that would result in a value
higher than 255 decimal simply ‘rolls over’ the field’s value through zero. Because
there is no ninth bit, the carry is discarded automatically.
A procedure for generating an LRC is:
- Add all bytes in the message, excluding the starting ‘colon’ and ending
CRLF. Add them into an 8–bit field, so that carries will be discarded.
- Subtract the final field value from FF hex (all 1’s), to produce the
ones–complement.
- Add 1 to produce the twos–complement.
Placing the LRC into the Message
When the the 8–bit LRC (2 ASCII characters) is transmitted in the message, the
high–order character will be transmitted first, followed by the low–order character.
For example, if the LRC value is 61 hex (0110 0001):.
LRC Character Sequence
Example :
An example of a C language function performing LRC generation is shown below.
The function takes two arguments:.
unsigned char *auchMsg As Long A pointer to the message buffer containing
binary data to be used for generating the LRC
unsigned short usDataLen ;
The quantity of bytes in the message buffer.
The function returns the LRC as a type unsigned char.
LRC Generation Function
static unsigned char LRC(auchMsg, usDataLen)
unsigned char *auchMsg ; /* message to calculate LRC upon */
unsigned short usDataLen ; /* quantity of bytes in message */
{
unsigned char uchLRC = 0 ; /* LRC char initialized */
while (usDataLen––) /* pass through message buffer */
uchLRC += *auchMsg++ ; /* add buffer byte without carry */
return ((unsigned char)(–((char)uchLRC))) ; /* return twos complement */
}
CRC Generation
The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16–bit
binary value. The CRC value is calculated by the transmitting device, which
appends the CRC to the message. The receiving device recalculates a CRC
during receipt of the message, and compares the calculated value to the actual
value it received in the CRC field. If the two values are not equal, an error results.
The CRC is started by first preloading a 16–bit register to all 1’s. Then a process
begins of applying successive 8–bit bytes of the message to the current contents
of the register. Only the eight bits of data in each character are used for generating
the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.
During generation of the CRC, each 8–bit character is exclusive ORed with the
register contents. Then the result is shifted in the direction of the least significant
bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is
extracted and examined. If the LSB was a 1, the register is then exclusive ORed
with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.
This process is repeated until eight shifts have been performed. After the last
(eighth) shift, the next 8–bit character is exclusive ORed with the register’s current
value, and the process repeats for eight more shifts as described above. The final
contents of the register, after all the characters of the message have been applied,
is the CRC value.
A procedure for generating a CRC is:
- Load a 16–bit register with FFFF hex (all 1’s). Call this the CRC register.
- Exclusive OR the first 8–bit byte of the message with the low–order byte
of the 16–bit CRC register, putting the result in the CRC register.
- Shift the CRC register one bit to the right (toward the LSB), zero–filling the
MSB. Extract and examine the LSB.
- (If the LSB was 0): Repeat Step 3 (another shift).
(If the LSB was 1): Exclusive OR the CRC register with the polynomial
value A001 hex (1010 0000 0000 0001).
- Repeat Steps 3 and 4 until 8 shifts have been performed. When this is
done, a complete 8–bit byte will have been processed.
- Repeat Steps 2 through 5 for the next 8–bit byte of the message.
Continue doing this until all bytes have been processed.
- The final contents of the CRC register is the CRC value.
- When the CRC is placed into the message, its upper and lower bytes
must be swapped as described below.
Placing the CRC into the Message
When the 16–bit CRC (two 8–bit bytes) is transmitted in the message, the
low-order byte will be transmitted first, followed by the high-order byte.
For example, if the CRC value is 1241 hex (0001 0010 0100 0001):.
CRC Byte Sequence
Example :
An example of a C language function performing CRC generation is shown on the
following pages. All of the possible CRC values are preloaded into two arrays,
which are simply indexed as the function increments through the message buffer.
One array contains all of the 256 possible CRC values for the high byte of the
16–bit CRC field, and the other array contains all of the values for the low byte.
Indexing the CRC in this way provides faster execution than would be achieved by
calculating a new CRC value with each new character from the message buffer.
Note This function performs the swapping of the high/low CRC bytes
internally. The bytes are already swapped in the CRC value that is
returned from the function.
Therefore the CRC value returned from the function can be directly
placed into the message for transmission.
The function takes two arguments:.
unsigned char *puchMsg ; A pointer to the message buffer containing
binary data to be used for generating the CRC
unsigned short usDataLen ;
The quantity of bytes in the message buffer.
CRC Generation Function
unsigned short CRC16(puchMsg, usDataLen)
unsigned char *puchMsg ; /* message to calculate CRC upon */
unsigned short usDataLen ; /* quantity of bytes in message */
{
unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */
unsigned uIndex ; /* will index into CRC lookup table */
while (usDataLen––) /* pass through message buffer */
{
uIndex = uchCRCHi ^ *puchMsgg++ ; /* calculate the CRC */
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;
uchCRCLo = auchCRCLo[uIndex] ;
}
return (uchCRCHi << 8 | uchCRCLo) ;
}
High-Order Byte Table
/* Table of CRC values for high–order byte */
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
} ;
Low-Order Byte Table
/* Table of CRC values for low–order byte */
static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
} ;
Disclaimer
and terms of use
Copyright ©
Shanith Babu Nagarajan. All rights reserved.
|